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Abstract—We study the parameters (knobs) of distribution-
based anomaly detection methods, and how their tuning affects
the quality of detection. Specifically, we analyze the popular
entropy-based anomaly detection in detecting covert channels
in Voice over IP (VoIP) traffic.

There has been little effort in prior research to rigorously
analyze how the knobs of anomaly detection methodology should
be tuned. Such analysis is, however, critical before such methods
can be deployed by a practitioner. We develop a probabilistic
model to explain the effects of the tuning of the knobs on
the rate of false positives and false negatives. We then study
the observations produced by our model analytically as well
as empirically. We examine the knobs of window length and
detection threshold. Our results show how the knobs should be
set for achieving high rate of detection, while maintaining a low
rate of false positives. We also show how the throughput of the
covert channel (the magnitude of the anomaly) affects the rate
of detection, thereby allowing a practitioner to be aware of the
capabilities of the methodology.

I. INTRODUCTION

Distribution-based anomaly detection methods aim to detect
anomalies in massive rate data streams like network traffic
streams, update streams in social networks etc. They do so by
monitoring the distributions (or histograms) of elements in the
stream under consideration. The distributions are monitored
for change by employing metrics of the distribution that track
various aspects of the stream distribution. Volume, entropy,
frequency moments, and KL-divergence are some metrics that
have been used in this regard in prior work [17], [11], [7], [20].
A significant deviation in the value of a metric is flagged as
an anomaly. Distribution-based anomaly detection has been
shown to be useful in detecting port scanning, denial-of-
service attacks, and flash crowds in network traffic [17], [5],
and in detecting activity of bots, outages, and flash events in
information networks [6].

Exfiltration of data via covert channels is an important threat
faced by organizations like the military that deal with classified
or sensitive information. Voice over IP (VoIP) is increasingly
being adopted for communication in the networks of these
organizations due to the benefits of the technology. These
organizations have, however, expressed concern over the data
confidentiality risks posed by covert channels piggybacking on
VoIP sessions. These concerns are well-founded, as we discuss
in Section III. Motivated by these concerns, we show the
effectiveness of distribution-based anomaly detection methods
for the detection of covert channels over VoIP. Intuitively,
information exfiltrated over a covert channel is an anomaly for

distributions associated with the abused carrier channel. While
designed for VoIP, we believe our methodology is applicable
to a much broader class of covert channels.

In our presentations and discussions with researchers on
distribution-based anomaly detection methods, we have fre-
quently had questions asked about the various parameters (we
will refer to them as knobs) involved. We found that how those
knobs should be tuned to achieve a good quality of detection
is an open problem in general.

One of these knobs is the choice of the length of the
window in which the distribution is measured. Distribution-
based anomaly detection methods typically slice the observed
stream into windows of equal length, either in terms of time
or in terms of number of elements. The metric values of the
distributions in successive windows is then monitored as a
timeseries. Another knob is the detection threshold beyond
which the metric value is flagged as an anomaly.

Many intrusion detection and prevention systems (IDS/IPS)
offer such tunable knobs for user configuration. It is common
knowledge among practitioners that large amounts of effort
are required to tune these knobs for optimal performance.
Despite the tuning of knobs being a complex and continuous
task, a rigorous study of the effects involved has not as yet
been undertaken. Such a study is also useful for estimating
the effectiveness of effort invested in tuning.

In this work we construct a probabilistic model to observe
the effects of the knobs, and then apply the model analytically
and empirically by experiments on our VoIP testbed using the
covert channels we developed. The primary contribution of
this work is to show how the tuning of the knobs affect the
quality of anomaly detection. To do the same, we analyze the
results of a distribution-based method on a VoIP covert channel
while varying the settings of the knobs. We design a simple
VoIP covert channel to test the methodology. Our results serve
to provide principles for tuning the knobs to practitioners
deploying the methodology in real-world applications, and for
systematically testing the limits of useful tunability. The latter
is an important issue for many practitioners: whereas it is
commonly assumed that tuning the parameters of an IDS/IPS
can improve its performance on a given network, the limits
of such improvements are not clear, and reaching them is
something of an arcane art.

Covert channels give us a good handle to vary the magnitude
of the anomaly by simply changing the throughput of the
covert channel. This ability is perfect for studying how the
magnitude of the anomaly affects detection. The Department



of Defense Orange Book [1] of security guidelines set the
direction here by prescribing a threshold bandwidth for covert
channels that should not be allowed on a secure system. It is
widely accepted that it is not possible to eliminate all forms
of covert channels, particularly those of a low throughput.
Instead, the practitioner should aim at eliminating covert
channels of throughputs that are sufficiently high so as to pose
a real threat. In this work we study how the detection rate (and
the false-alarm rate) vary as a function of the covert channel
throughput, allowing the implementer to be aware of the
capabilities and limitations of distribution-based methodology.

The contributions of this work are summarized thus:
1) A rigorous analysis of the effects of tuning the knobs

of distribution-based anomaly detection on detection
quality. Construction of a probabilistic model to observe
such effects, and analytical and empirical applications of
the model.

2) A recipe for a practictioner to follow, to tune the knobs
optimally in his specific environment.

3) Our analysis yields an understanding of the subtle effects
that come into play when knobs are tuned, and which
have a resulting impact on detection quality.

4) Our work considers several different distributions and
anomaly sizes (by varying the covert channel rate).
It is thus generally applicable to all distribution-based
anomaly detection methods.

5) Analysis of the tradeoff between the magnitude of the
anomaly and the quality of detection, demonstrating
anomalies of what sizes are feasible to detect robustly.

6) Design of a VoIP covert channel, and demonstration of
the use of distribution-based anomaly detection to detect
such a channel.

The rest of the paper is organized as follows. We present
related work next. Then, we discuss VoIP and our sample
VoIP covert channel in Section III. Section V presents our
probabilistic model, and analytical application of the same. In
Section VI we present our empirical evaluations of the model.

II. RELATED WORK

Work on selecting parameters for testing time series tends
to be domain specific. In stock market forecasting [9], minor
variations in parameter settings have a big effect on the
performance, and it was noted that there is little explicit
guidance from theory regarding the in-sample window used
in the forecast model. In detecting shilling attacks on recom-
mendation systems [21], an optimal window size is derived
when the number of attack profiles is known, and a heuristic to
estimate the number of attack profiles and adaptively adjust the
window size is proposed. In medical diagnosis [14], entropy
analysis has been shown to be useful in detecting Alzheimer’s
disease with window length determined based on spectral
analysis. In network anomaly detection, it has been shown [19]
that a variable-length window is a more effective strategy for
sendmail anomalies based on monitoring conditional entropy.
Here, we study the effects of parameter selection specifically
for the detection of covert channels in VoIP traffic using

Fig. 1. Tshark output illustrating a CCSeq tampered packet with RTP
timestamp and sequence number set to 0. [Best viewed in color.]

distribution-based methods. Due to the nature of our analyses,
however, our recommendations tend to be generally applicable
to all distribution-based anomaly detection methods.

The survey of Giani et al. [12] provides a taxonomy
of covert channel designs. We consider only storage covert
channels that use packet header fields for detection in this
work. This class of channels is known to be practical for
use, because of the high bandwidth provided by the channels.
However, Huang et al. [16] present a VoIP covert channel using
steganography that claims to have a high capacity. Methods for
detecting covert channels include those based on entropy [13]
(but these are specifically only applicable to timing-based
channels) and n-gram statistical analysis [10].

III. VOIP COVERT CHANNELS

In this section we discuss our choice of the sample covert
channel design. This choice is motivated by our perception
of the relative prominence of both the protocol abuse tricks
and the related network technologies to be used. A better
motivation would be grounded in statistics of actual illicit use
of covert channels in enterprise networks; unfortunately, such
statistics are not widely available. Hence, we must base our
choice on general architectural and practical considerations of
network monitoring and administration.

A. Why VoIP?

VoIP is an ideal target for establishing resilient covert
channels across an organization’s network boundary by a
malicious insider. VoIP functionality is critical to modern
enterprise. VoIP-based phone and voice mail systems offer
numerous business advantages (maintenance costs not least)
over traditional “Plain Old Telephone System” private phone
exchanges in organizations, and are replacing PBXs across the
board. Thus, it is reasonable to expect VoIP functionality to be
deeply integrated into the organization’s network fabric—with
multiple security exceptions required to support it.

Accordingly, it is a safe bet that the organizations’ network
security policies and controls such as firewalls and intrusion
prevention systems (IPS) must accommodate VoIP protocols,
possibly in multiple implementation flavors. However, any



single VoIP flavor itself involves multiple interrelated protocols
with complex endpoint state. This complexity is hard to model
on network appliances that are necessarily limited in the
amount of context they can effectively mediate.

In particular, VoIP protocols are notoriously complex and
demanding on firewall rules—for example, VoIP signaling
and media use different protocols such as SIP and RTP,
which require dedicated open port ranges to operate, and are
hard to narrow down. Moreover, Network Address Translation
(NAT), arguably the most effective way to isolate internal IP
LANs, is well-known to cause problems for SIP-based media
session setup, and therefore requires workarounds which in
turn raise network configuration complexity and undermine
firewall isolation of internal systems. Furthermore, VoIP me-
dia protocols such as RTP place considerable performance
requirements on network elements and paths they cross. As
a result, various forms of deep packet inspection and other
in-line IPS functionality is impeded by both the latency and
bandwidth requirements of these protocols to deliver good
voice audio quality. The combination of these circumstances
makes abusing VoIP protocols an effective way for a malicious
insider to punch unnoticed through network boundary defences
such as strict firewall rules and traffic auditing measures.

B. VoIP signaling and media protocol essentials

The basic design of VoIP involves separate protocols for
signaling (e.g., SIP or Cisco’s SCCP) to establish a voice
medium session and for the actual transfer of encoded voice
payload (e.g., using RTP). In particular, the signaling session
facilitates the direct or proxied connection pathway between
the VoIP endpoint devices such as handsets.

This separation is necessitated both by architectural con-
cerns such as integration of the session creation with the or-
ganization’s employee address directories and by performance
considerations for established sessions (ideally, established
directly between the communicating VoIP endpoints).

C. Basic VoIP convert channel design considerations

Having the firewalls’ cooperation in passing payloads out-
side the organization is only one step towards successful data
exfiltration. The exfiltrated data must also be reasonably well-
hidden from network auditors, and exfiltrated at a reasonable
rate to reduce the time of the illicit sessions’ duration. Stegano-
graphic channels (e.g., SteganRTP [2]) must reduce bandwidth
to satisfy classic concepts of steganographic stealth, which
assume that any given session is likely to be scrutinized for
illicit content; this is far from the everyday reality of network
monitoring, in which even obviously anomalous sessions slip
through daily, due to large volumes of traffic and the costs
of its processing. Accordingly, the design of a covert channel
need not be steganographic at the bandwidth’s detriment. In-
deed, most publicly available covert channel implementations
do not pursue steganographic sophistication [4], [3].

However, when designing a VoIP covert channel, one must
account for the possibility of a human auditor getting to
listen in on an arbitrary segment of the call, and modern

network monitoring appliances provide such a capability to
operators. Failing such a test or otherwise attracting operator
attention with loggable errors would be imprudent for an
insider attempting to exfiltrate information.

Accordingly, we formulate the following observations re-
garding VoIP covert channel design: a covert channel must
be resilient to network cross-site call paths common in pro-
duction (thus favoring storage channels over timing-based
channels [12]); a covert channel should not create network
error conditions other than those commonly present; and a
covert channel crossing a VoIP system should be inaudible to
auditors, and to users making calls. Together, these consider-
ations motivate our choice of a simple covert channel.

D. Sample VoIP covert channel
Our covert channel CCseq uses the RTP protocol used by

VoIP for the voice medium. CCseq’s design, while simple, is
representative of popular non-steganographic covert channels.

The CCseq “protocol” abuses the real-time nature of RTP
voice streams to inject data chunks comparable in size to
actual packet payloads, in place of the actual payloads. To
keep these payloads from being interpreted as voice data (and
creating loud audible noises and/or packet parsing errors), the
RTP sequence number and/or timestamp in such packets is
changed to appear outside of the current stream’s window (see
Figure 1). A number of softphones and handsets we tested
silently discard such packets, assuming them to be delayed by
the network (and delivered late, out of order).

The channel, despite its design naivete, is transparent to
human listeners and commands much higher bandwidth than,
say, SteganRTP, which is limited to just using the lower bit of
each voice payload byte (under the simplest G.711 codec).

For the protocol’s intended recipient on the remote end of
the VoIP path (from the organization’s border outward), the
first 4 bytes of RTP payload contain a fixed magic string for
easy identification, the next 4 bytes contain a sequence number
to detect loss of injected packets, and the rest of the bytes are
covert data (example in Figure 1).

IV. DISTRIBUTION-BASED ANOMALY DETECTION

We now introduce distribution-based anomaly detection.
Distribution-based anomaly detection methods typically take
in as input a stream of data. For instance, in network traffic
the stream of packets might be the input. Usually, if this
stream consists of complex multidimensional values, then one
dimension may be selected for consideration as a feature. In
network traffic, the source IP address is an example of a fea-
ture. We can assume that the feature under consideration may
take values from a universe [n] = {1, 2, . . . , n}, for certain
value of n. Then we can consider the distribution (histogram)
of the feature values in the stream. Distribution-based methods
are a class of methods that monitor several aspects of such
distributions for significant changes that indicate anomalous
activity.

Since the distribution itself is a multidimensional value, a
metric is usually used to capture some aspect of the distribu-
tion. Volume, entropy, frequency moments, and KL-divergence



Fig. 4. Detection rate for various windows. Feature: byte-0; t=10. [Best
viewed in color.]

have all been used previously as metrics for comparing distri-
butions in this manner [17], [11], [7], [20]. Usually the stream
is monitored by slicing it into consecutive windows of equal
length, either in terms of time or number of elements, and then
computing and comparing the metric values in each window.
Since each metric captures only certain characteristics of the
distribution, several metric and feature combinations may be
monitored together. The results may then be combined using
a classifier for a more complete strategy.

Distribution-based anomaly detection is useful to network
operators because they are challenged by the high data rates
observed in their networks, and are unable to manually comb
through the stream for anomalies. Distribution-based methods
offer a summarized view of the stream for easy comprehension
of network state. Computation of the metric over high rate
streams is a challenge. Data stream algorithms offer com-
putational efficiency in this regard, and have been applied
previously to enable efficient monitoring [18], [5]. We further
discuss them and their use in our setting in Section VII.

V. PROBABILISTIC MODELING OF DETECTION QUALITY

In this section we present our probabilistic model to predict
detection quality terms of window length, covert channel rate,
and detection threshold. We apply the model analytically.

Notation: We call a packet (and the corresponding stream
element) that is part of the covert channel as a tainted packet
(tainted element), and a packet (element) that belongs to the
normal VoIP stream as a regular packet (regular element). Let
` and t denote the number of tainted packets, and the interval
(in terms of number of regular packets) between successive
tainted packets, respectively. Further, let w denote the length
of the window over which the detection method is applied, and
τ denote the threshold used in the method to determine when
the metric value has deviated far enough for the window to be
flagged as an anomaly. We assume that the normal VoIP stream
elements are produced by sampling from some underlying
distribution D over the universe [n] of possible values. For
instance, when the RTP sequence numbers are considered as
the stream for monitoring n = 232. We will denote a window
W of elements sampled from the distribution D as W ∼ D.
Let M denote the metric under consideration in the detection
method, so that M(W ) denotes its value for the distribution

Fig. 5. ROC curves for different throughput rates. Feature: byte-8; w=1000.
[Best viewed in color.]

induced by elements in window W . We will denote a window
WC containing tainted elements among regular elements that
are sampled from underlying distribution DC as WC ∼ DC .

A. General Model

We first present our model in full generality, leaving D and
M unspecified. Later on we demonstrate how the model can
be applied analytically in this section, and experimentally in
Section VI with specific values of D and M .

Our goal is to model the effect of the knobs (the window
length w, and the threshold τ ) and the covert channel through-
put (controlled by the variable t) on the rate of false positives
and the rate of false negatives (which in turn determines
the detection rate). First, we need to establish a baseline
normal value for the metric against which the deviation is
measured at the time of monitoring the stream. Our detection
algorithm raises an alarm if it finds the deviation in any
window is significant. The baseline is simply given by the
expected value E[M ] =

∑
W Pr[W ] · M(W ) of the metric

in the absence of any covert channel, where the summation
is over all possible windows W of length w. If r = `t/w is
the number of windows required to accommodate the covert
channel at the given rate, then our detection algorithm detects
and anomaly if, in any window Wi, 1 ≤ i ≤ r, we have
|M(Wi)− E[M ]| > τ · E[M ]. We have the false-positive rate
xw(τ) and the false-negative rate yw(τ) given by

xw(τ) = Pr
W∼D

[|M(W )− E[M ]| > τ · E[M ]] , and (1)

yw(τ) = Pr
W C

i ∼DC∀i

[∣∣M(WC
i )− E[M ]

∣∣ ≤ τ · E[M ] ∀i
]
. (2)

Note that, we consider tainted packets only while computing
the false-negative rate, and not when computing the false-
positive rate. In general, we expect the false-positive rate to
decrease as window length is increased, given the reduced
variance of the sampled distribution, as sample size increases.



Fig. 2. ROC curves computed analytically for the distribution in Case 1. [Best viewed in color.]

Given the above model, the effect of w and τ on the
false positive and false-negative rate can be observed by
evaluating the probabilities xw(τ) and yw(τ). The effects
can be visualized by plotting the ROC (Receiver Operating
Characteristic) curves Rw = [xw(τ), 1− yw(τ)], for different
fixed values of w, while varying τ .

The effect of the covert channel throughput (anomaly mag-
nitude) can be observed by plotting the same ROC curves for
different values of the throughput parameter t.

B. Applying the Model

We now demonstrate applications of our model to specific
scenarios. For the metric M we consider the entropy H since
it is the most widely studied. Two effects on distributions
frequently occur due to anomalies. First, the anomaly intro-
duces elements, all of the same value in the stream. Second,
the anomaly introduces elements each of which has a distinct
value. For instance, in network traffic, a port scan results in the
effect of the second case on the destination port distribution,
and the effect of the first case on the source IP distribution.
For more examples and justification, see [17] (network traffic),
and [6] (information networks). For brevity we model only the
first case in the first analytical application below.

We apply analytical models for the following distributions.
1) All identical elements, with noise: In this case, we

assume that the normal distribution D consists of all regular
elements in the window being identical. But we allow for
the possibility of noise, with the elements introduced by
noise being all distinct. We model this distribution as follows.
Without loss of generality, each element xi, 1 ≤ i ≤ w in
the window is either 0 with probability 1− p, or is a distinct
non-zero random element with probability p, for p ∈ [0, 1].
The parameter p controls the noise in the stream. The number
of noise elements k in the window follows the Binomial
Distribution B(w, p). If we let Hk denote the value of entropy
when there are k noisy elements in the window, then we have

Hk = H(1, 1, . . . , 1︸ ︷︷ ︸
k times

, w − k)

= k · (1/w) log(w) + (w − k)/w log(w/(w − k)),

E[M ] = E[H] =
w∑

k=0

(
w

k

)
pk(1− p)w−kHk.

We can now compute xw(τ) by simply finding all values of
k for which |Hk − E[H]| > τ · E[H], and summing up the
corresponding probabilities

(
w
k

)
pk(1− p)w−k.

To compute yw(τ), we need to incorporate the effect of
the covert channel. We can write yw(τ) = (y′w(τ))r, where
y′w(τ) = PrW C∼DC

[
|M(WC)− E[M ]| ≤ τ · E[M ]

]
and r

we recall is the number of windows with tainted packets (since
windows are sampled independently). We consider the case
when the covert channel introduces tainted elements that are
all distinct and non-zero, and further that they are also distinct
from noise elements, if any. If w ≤ `t/2, we are guaranteed to
have a complete window overlapping the covert channel. To
see this consider the case when w = `t; it may happen that
a window overlaps (and ends at) the first half of the covert
channel (of length `t/2), and the following window overlaps
(and begins at) the latter half of the covert channel. But when
w ≤ `t/2 this cannot happen and we will have bw/tc tainted
elements in some window. On the other hand, if w > `t/2,
then we will have a window with at least `/2 tainted elements.
So if we let c = bmin(w, `t/2)/tc, then we get a histogram
with k distinct noise elements and ≥ c distinct tainted elements
(we assume there are exactly c tainted elements to get a lower
bound on the detection rate). The number of noise elements
now follows B(w− c, p). If we now let HC

k denote the value
of entropy in the presence of the covert channel, we have

HC
k = H(1, 1, . . . , 1︸ ︷︷ ︸

k+c times

, w − k − c)

= (k + c) · 1
w

log(w) +
w − k − c

w
log

(
w

w − k − c

)
,

We can now compute y′w(τ) by simply finding all values of
k for which

∣∣HC
k − E[H]

∣∣ > τ · E[H], and summing up the
corresponding probabilities

(
w−c

k

)
pk(1− p)w−k−c.

Observations: The ROC curves of the false positives and
detection rates obtained in this manner are shown in Figure 2.
The covert channel in the plots are introduced with parameters
` = 600, and t = 15. There are four plots, one for each value
of p that we set. We observe that, other factors being equal,
the ROC curves drift towards the 45-degree line (classifier
quality degrades) as the noise probability increases. This result
is primarily due to the increase in variance and hence the rate
of false alarms as the noise levels increase. With a fixed value
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Fig. 3. ROC curves computed analytically for Case 2 with various features. [Best viewed in color.]



of p within a plot we see, however, that as window length is
increased, the ROC curves first approach the ideal classifier,
until the window length is w = `t/2 = 4500. Thereafter, as
the window length is increased further, the classifier quality
deteriorates towards the 45-degree diagonal line. This suggests
that the ideal window length for detection is w = `t/2.
This may be clear as a consequence of the maximum value
`t/2 possible for the parameter c. However, the reason is not
completely clear merely by looking at the expressions for
xw(τ) and yw(τ). A direct reason for the suggested setting
of w is that as the window length is increased, beyond the
length `t/2, the proportion of tainted packets in each window
containing the covert channel keeps declining, resulting in a
lower detection rate.

2) Multinomial distribution: In this general case we assume
the normal distribution D consists of each element i ∈ [n]
being produced independently with some probability pi in the
stream (

∑n−1
i=0 pi = 1). That is, the number of occurrences

(frequency) mi of any element i in a window of length
w is distributed according to the multinomial distribution
M(p0, p1, . . . , pn−1, w). Then for each possible frequency
vector ~m = (m0,m1, . . . ,mn−1) possible in the window
(i.e., for each such vector with

∑n−1
i=0 mi = w), we have

that Pr[~m] = w!/(m0!m1! . . .mn−1!)pm0
0 pm1

1 . . . p
mn−1
n−1 . The

probabilities pi, 0 ≤ i ≤ n−1 may be determined by observing
a “training set” stream of regular elements. If we denote the
entropy with frequency vector ~m as H(~m), then we have

H(~m) =
n−1∑
i=0

mi/w log(w/mi), and

E[H] =
∑

~m s.t. P
i mi=w

Pr[~m] ·H(~m).

We are now in a position to compute xw(τ) from Equation 1 as
before by summing up the relevant probabilities. We compute
yw(τ) similarly as before from Equation 2, only this time
we use the Multinomial Distribution M(pC

0 , pC
1 , . . . , pC

n−1, w)
instead that incorporates the covert channel. The probabilities
pC

i now may be obtained from a training set stream having
the covert channel.

Computation: The difficulty of computing xw(τ) and
yw(τ) is that it requires looping over the set of all possible
vectors ~m such that

∑n−1
i=0 mi = w. Generating such vectors

is a non-trivial process, but more importantly as w increases,
the number of such vectors grows at a rate that is exponential
or greater. So, instead of computing xw(τ) and yw(τ) directly
from the formulas, we instead perform a Monte-Carlo sim-
ulation to sample values from distribution D, and use those
values to compute first E[H] and then xw(τ) and yw(τ). With
a large number of simulations we expect to get results that are
close to the actual values of xw(τ) and yw(τ). We ran at least
1000 simulations in each case, and more as needed to ensure
that the change in the values computed using the samples was
not more than 0.1%.

Parameter ranges: We compute xw(τ) and yw(τ)
in this manner for t = 10, 15, 20, 25, 30, 40, 50,

and ` = 600, as is the case in our experiments in
the next section. We use window lengths from w =
1000, 2000, 3000, 4500, 6000, 8000, 10000, 20000, 30000.
These values straddle the length of the covert channel `t for
the values of t. We observed in previous models that the
classification quality shows an inflection point at w = `t/2.

Features: We consider the following features that are
affected by our covert channel described in Section III:

• Byte 0 of RTP payload. In tainted packets this byte con-
tains the fixed magic number, whereas in regular packets
the byte is distributed according to bytes generated by
the G.711a voice encoding codec over our input voice
stream. For the covert distribution, we chose probabilities
pC

i with pC
k = 1, and pC

i = 0 for i 6= k, where k is the
magic number. On the other hand for the regular feature
probability distribution, we computed probabilities pi

using a training set generated from a real VoIP call with
about 350,000 RTP packets. This training set is described
in Section VI. We found the probability distribution pi to
be close to a uniform distribution.

• Byte 7 of RTP payload. This byte contains a sequence
number used internally by the covert channel. The se-
quence number is incremented sequentially for every
tainted packet. In regular packets, this feature contains
G.711a voice encoded bytes. For the regular packet we
chose the probabilities pi from the training set (again we
found it is close to normal). We set the covert channel
probabilities pC

i = 1/n, i.e., uniformly distributed (the
best we can do given the multinomial distribution model).

• Byte 8 of RTP payload. In regular packets, this feature
contains G.711a voice encoded bytes. For the regular
packets we choose the probabilities pi from the training
set (again we find it is close to uniform). In the tainted
packets this byte is distributed according to ASCII text.
We used our entire text input, the text of Alice’s Ad-
ventures in Wonderland, to compute the covert channel
probabilities pi. Note, however, that in sending the text
via the covert channel, only specific bytes from the file
at periodic offsets will appear in this byte position in the
covert channel. The other bytes will occupy other bytes
in the covert payload.

• RTP sequence number. This is the last byte of the RTP se-
quence number that is incremented sequentially for each
RTP packet. For regular packets, we set the probabilities
pi = 1/n, i.e., uniformly distributed (the best we can
do given the multinomial distribution model). Our covert
channel relies on setting the RTP sequence number to
zero. So, for tainted packets, we set the probabilities pC

i

such that pC
0 = 1, and pC

i = 0 for i 6= 0.
The ROC curves computed by this analysis are in Figure 3.
For brevity, we only include the plots for t = 25, 30, 40, 50.

Observations: As t increases (i.e., covert channel
throughput decreases) we observe that the ROC curves tend
to move toward the 45-degree diagonal. This indicates that
performance degrades as a result of decrease in detection rate
due to the dilution of tainted packets by regular packets in



covert channel windows. The effect of t on the false-alarm
rate is a bit harder to observe from the figure, but careful
observation (e.g., by looking at the end-points of the ROC
curves) shows that the false-alarm rate remains in the same
interval range for all values of t, indicating that the false-
alarm rate was not affected by t. This is simply because the
false-alarm rate is computed in the absence of anomalies.

Now, as w is increased, we observe consistently in the
plots that the false-alarm rate decreases. The reason for this
observation may be that as the number of samples in the
window from the underlying distribution is increased, the
variance decreases (analogous to the Law of Large Numbers).
However, the effect of w on the detection rate is not consistent.
As w increases beyond `t/2 we expect the detection rate per
window to decrease since the proportion of tainted elements
decreases in a window (as also observed in Case 1). On the
other hand, when w < `t/2 the detection rate per channel may
decrease because of the smaller number of windows, when the
window length is decreased. But although the proportion of
tainted elements does not change in this case, different metrics
react in different ways to the change in the window length and
the detection rate may be determined by such metric behavior.

The combined effect of the detection rate and the false-alarm
rate makes it hard to see the change in the detection rate alone
by increasing w. To see the effect of detection rate separately,
in Figure 4 we plot it against various values of the threshold
τ (for the byte-0 feature with t = 10). We observe that for
each window length, the detection rate fell from 1 to 0 as the
threshold is increased. However, the fall was at a much later
threshold for window lengths 1000, 2000 and 3000, and as the
window length is increased we find that the fall occurs earlier.
This observation indicates that when the window length was
increased beyond 3000, the detection rate decreased.

When w < `t/2, with the byte-7 and byte-8 features,
we see the detection rate mostly decreasing with increase
in w. But with byte-0 and the RTP sequence number the
detection rate increased as w is increased (at least for t = 50).
We attribute this inconsistent behavior to the way the metric
behaves under different distribution combinations (i.e., tainted
element distribution and regular element distribution).

For the byte-8 feature we find that at higher throughputs
(t = 25, 30) the ROC curve tends away from the 45-degree
diagonal as w is increased. When looking at the ROC curve
as a whole we observe that for our features, as the window
length w is increased, the curve may drift away from the 45-
degree diagonal or towards it depending on the feature and
throughput.

Effect of Throughput: Our framework of analysis allows
us also to see what effect the covert channel throughput would
have on the detection quality. To see this effect, we must now
fix a value of w and plot the ROC curves corresponding to
different values of the parameter t, and then repeat the process
for different values of w. For brevity, here, we present only the
results for w = 1000, with the byte-8 feature. The practitioner
should apply the same process for different values of w while
modeling his setting. The results are shown in Figure 5. We

observe, as expected, that as the rate (as a fraction of the total
VoIP traffic) decreased from 10% to 2%, the ROC curve moved
towards the 45-degree diagonal, indicating that the detection
quality is getting poorer. These curves enable the practitioner
to understand what rates of covert channel he has a hope of
detecting within his acceptable false alarm rate.

VI. EXPERIMENTAL ANALYSIS

In the previous section, our analytical models let us study
some of the ways in which the knobs affect detection via
our analytical models. In this section we look at the effects
experimentally to understand the effects directly with actual
calls in our testbed.

Dataset: First we describe our call setup and the datasets
we use in our experiments. Our testbed consists of two client
machines registered with an Asterisk SIP server. The clients
are able to make calls to each other through their registration
with the server, but the server is configured so that the RTP
packets are exchanged directly between the clients without
being routed through the server. Our dataset is generated
by making calls in this manner. For the audio input in the
call, we play a French language training audio program on
both ends of the call. We save packet capture traces of calls,
and our dataset consists of these traces. We save one trace
consisting of approximately 350,000 RTP packets in each
direction. This trace does not contain any tainted packets and
serves to compute the expected normal value of entropy, and
also to compute the false-alarm rate. We also capture traces
while running our covert channel at different throughputs.
The payload for our covert channel is the entire text of
Alice’s Adventures in Wonderland sent in 256 byte chunks
per tainted packet. This results in a total of 602 tainted
packets. For each value t = 10, 15, 20, 25, 30, 40, 50, we run a
covert channel and save the call packet trace separately. These
traces contain approximately just enough packets to include all
tainted packets at the given covert channel throughput.

Experiments: We compute the en-
tropy with window lengths w =
1000, 2000, 3000, 4500, 6000, 8000, 10000, 20000, 30000,
in each of our data sets. In the data sets containing the covert
channel we ensure that we do not consider any windows
that do not contain any tainted packets at all. To increase
our sample set size, in each trace, we slice the stream into
windows, by first starting at different offsets (1, 2, . . . , 1000)
from the start of the trace. We then compute the entropy in
each window. Using these entropy values we are now able
to compute the expected value E[H] and the false-alarm
rate xw(τ) from the trace not containing the covert channel,
and then compute the detection rate yw(τ) from the traces
containing the covert channel.

Observations: The ROC curves from our experiments
are shown in Figure 6. We have not included the plots for
the RTP sequence feature, because we find that the false-
alarm rate is always zero, leading to an empty figure. The
reason for the zero false-alarm rate is that the distribution
in each window is always the same—it consists of sequence
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Fig. 6. ROC curves computed experimentally with various features. [Best viewed in color.]

numbers increasing consecutively. Note that in the analytical
model in the previous section, the assumptions of the model—
the underlying multinomial distribution—results in a non-zero
false-positive rate in some cases. This demonstrates that the
assumptions made by our analytical model may not always
hold in practice. For other features our observations are similar
to the analytical case. We found that increasing t tended to a
poorer detection rate, resulting in a poorer overall detection
quality even though the false-alarm rate was unaffected. For
the effect of increase in w, we generally found that an increase
in w led to a decrease in the detection rate, and a decrease in
the false-alarm rate.

As in the analytical case, at higher throughputs for byte-
8 we see the ROC curve move away from the 45-degree
diagonal as w increases. But overall otherwise, we find, as
in the analytical case, that as the window length is increased,
the ROC curves move toward the 45-degree diagonal.

VII. RECOMMENDATIONS

In this section we provide recommendations to a practitioner
based on our results on how to tune the knobs for distribution-
based anomaly detection methods in his specific setting. We
also provide recommendations on how to efficiently apply the
methods using sketching algorithms.

Our results show that,

• All other factors being equal, as the window length w
is increased, the detection rate may increase or decrease.
The behavior may be different for w < `t/2 and for w >
`t/2. The false-alarm rate, on the other hand, decreases
monotonically as the window length is increased. This
effect is attributed to the decrease in the variance as the
number of samples in the window is increased. If the
distribution of regular elements is fixed in each window
(e.g., the RTP sequence number), the false positive rate
is always zero (even as window length is increased).



• For a fixed window length, all other factors being equal,
as the threshold is increased, both the false-alarm rate and
the detection rate decrease. This effect is in agreement
with our basic intuition.

• For a fixed window length, all other factors being equal,
the detection rate increases with the increase in covert
channel throughput. The covert channel rate has no
bearing on the false-alarm rate, since the false-alarm rate
is computed in the absence of anomalies.

Since the rate of change of the detection rate and false-alarm
rate might be independent, an optimal tuning of the window
length might depend on the covert channel throughput. Thus,
it may be necessary to run the detection methods with several
different window lengths, depending on the throughputs of
the covert channels that one expects. Below we describe
how detection methods with multiple window lengths can be
employed efficiently. To tune the window length w and the
threshold τ the practitioner must repeat our factorial-design-
like analysis to compute the false-alarm rate and detection
rate for several settings of the knobs and the covert channel
throughput and compare them via ROC curves.

Efficient Monitoring with Sketching Algorithms: We now
discuss how we can run distribution-based methods efficiently
when analysis like ours suggests it is necessary to do so at
different window lengths. As we mentioned in Section IV, data
stream algorithms enable efficient online estimation of metrics
of distributions when the input arrives in a stream-like fashion.
Suppose the stream σ consists of m elements a1, a2, . . . , am

from the universe [n]. A data-stream algorithm estimates
metric M(σ) efficiently with respect to memory usage and
computation. In our case, the stream σ is the window W for
each window in network traffic. When the traffic rate is mas-
sive, it is not feasible to compute M(W ) by first storing the
entire window in memory. The problem is compounded when
many features and metrics are to be monitored. Further, as we
observe, monitoring metrics at different window lengths may
be required. Certain data-stream algorithms, called sketching
algorithms, address these problems. These algorithms maintain
a data structure D(W ) called a sketch, from which the metric
value M(W ) can be estimated. Sketches have the property that
they can be combined efficiently: for two disjoint windows
W1 and W2, given only their sketches D(W1) and D(W2),
it is possible to combine them to obtain D(W1 ∪W2). So in
addition to estimating M(W1) and M(W2), sketches allow us
to additionally estimate M(W1 ∪W2) at almost no additional
computational cost. The property extends to the case when
sketches for multiple disjoint windows are provided. Sketching
algorithms for computing entropy [15] and the frequency
moments [8] are available.

Now, when our analysis suggests that we run
our distribution-based method with window lengths
w1, w2, . . . , wt, we can run one instance of the
distribution-based method with a window length of
w = GCD(w1, w2, . . . , wt) sketching algorithms. Then,
to estimate the metric value M(W ) in a window W of
length wi, we only need to combine the sketches from the

wi/w sub-windows, and estimate M(W ) from the combined
sketch. Note, however, that the error bounds on the estimates
are usually a function of the length of the stream, so that
applying this method to combine a large number of windows
may result in larger estimation errors. We refer the reader to
the relevant algorithms [15], [8] for specific details on the
error bounds.

VIII. CONCLUSIONS

We showed the complex effects the knobs of distribution-
based methods can have on detection quality. We provide a
analysis framework that practitioners case use to tune these
knobs when implementing such methods in their own environ-
ments. We observe that in many scenarios it will be necessary
to employ detection methods using several window lengths. In
such cases, we provide an efficient approach using sketches to
minimize memory and computation overhead.

REFERENCES

[1] Department of Defense. 1985. Trusted Computer System Evaluation
Criteria. DoD 5200.28-STD.

[2] http://steganrtp.sourceforge.net/.
[3] http://www.jjtc.com/Security/stegtools.htm.
[4] http://www.sans.org/security-resources/idfaq/covert chan.php.
[5] C Arackaparambil, S Bratus, J Brody, and A Shubina. Distributed

monitoring of conditional entropy for anomaly detection in streams. In
Proc. of IEEE Workshop on Scalable Stream Processing Systems, 2010.

[6] C Arackaparambil and G Yan. Wiki-watchdog: Anomaly detection in
Wikipedia through a distributional lens. In Proc. of IEEE/ACM Web
Intelligence, 2011.

[7] P Barford, J Kline, D Plonka, and A Ron. A signal analysis of
network traffic anomalies. In Proc. of SIGCOMM Workshop on Internet
Measurment, 2002.

[8] L Bhuvanagiri, S Ganguly, D Kesh, and C Saha. Simpler algorithm for
estimating frequency moments of data streams. In Proc. of ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 708–713, 2006.

[9] M J Cooper and H Gulen. Is Time-Series Based Predictability Evident
in Real Time? SSRN eLibrary, 2004.

[10] V Crespi, G Cybenko, and A Giani. Attacking and defending covert
channels and behavioral models. CoRR, abs/1104.5071, 2011.

[11] A D’Alconzo, A Coluccia, and P Romirer-Maierhofer. Distribution-
based anomaly detection in 3g mobile networks: from theory to practice.
Int. J. Netw. Manag., 20:245–269, September 2010.

[12] A Giani, V Berk, and G Cybenko. Data exfiltration and covert channels.
In Proc. of Sensors, and Command, Control, Comm., and Intelligence
Technologies for Homeland Security and Homeland Defense IV, 2006.

[13] S Gianvecchio and H Wang. Detecting covert timing channels: an
entropy-based approach. In Proc. of ACM CCS, pages 307–316, 2007.

[14] C Gomez and R Hornero. Entropy and complexity analyses in
alzheimer’s disease: An MEG study. Open Biomed Eng J, 4:223–35,
2010.

[15] N Harvey, J Nelson, and K Onak. Sketching and streaming entropy via
approximation theory. In Proc. of 49th IEEE FOCS, 2008.

[16] Y F Huang, S Tang, and J Yuan. Steganography in inactive frames
of VoIP streams encoded by source codec. Information Forensics and
Security, IEEE Transactions on, 6(2):296 –306, june 2011.

[17] A Lakhina, M Crovella, and C Diot. Mining anomalies using traffic
feature distributions. In Proc. of SIGCOMM, 2005.

[18] A Lall, V Sekar, M Ogihara, J Xu, and H Zhang. Data streaming
algorithms for estimating entropy of network traffic. SIGMETRICS
Perform. Eval. Rev., 34(1):145–156, 2006.

[19] W Lee and D Xiang. Information-theoretic measures for anomaly
detection. In Proc. of IEEE Symposium on Security and Privacy, 2001.

[20] G Yan, S Eidenbenz, and E Galli. SMS-Watchdog: Profiling social
behaviors of SMS users for anomaly detection. In Proc. of RAID, 2009.

[21] S Zhang, A Chakrabarti, J Ford, and F Makedon. Attack detection
in time series for recommender systems. In Proc. of ACM SIGKDD
KDD’06, pages 809–814, 2006.


